Consensus Algorithms for Estimation and Discrete Averaging in Networked Control Systems
نویسنده
چکیده
In this thesis several topics on consensus and gossip algorithms for multi-agent systems are addressed. An agent is a dynamical system that can be fully described by a state-space representation of its dynamics. A multi-agent system is a network of agents whose pattern of interactions or couplings is described by a graph. Consensus problems in multi-agent systems consist in the study of local interaction rules between the agents such that as global emergent behavior the network converges to the so called "consensus" or "agreement" state where the value of each agent's state is the same and it is possibly a function of the initial network state, for instance the average. A consensus algorithm is thus a set of local interaction rules that solve the consensus problem under some assumptions on the network topology. A gossip algorithm is a set of local state update rules between the agents that, disregarding their objective, are supposed to be implemented in a totally asynchronous way between pairs of neighboring agents, thus resembling the act of "gossiping" in a crowd of people. In this thesis several algorithms based on gossip that solve the consensus and other related problems are presented. In the rst part, several solutions to the consensus problem based on gossip under di erent sets of assumptions are proposed. In the rst case, it is assumed that the state of the agents is discretized and represents a collection of tasks of di erent size. In the second case, under the same discretization assumptions of the rst case, it is assumed that the network is represented by a Hamiltonian graph and it is shown how under this assumption the convergence speed can be improved. In the third case, a solution for the consensus problem for networks represented by arbitrary strongly connected directed graphs is proposed, assuming that the state of the agents is a real number. In the fourth case, a coordinate-free consensus algorithm based on gossip is designed and applied to a network of vehicles able to sense the relative distance between each other but with no access to absolute position information or to a common coordinate system. The proposed algorithm is then used to build in a decentralized way a common reference frame for the network of vehicles. In the second part, a novel local interaction rule based on the consensus equation is proposed together with an algorithm to estimate in a decentralized way the spectrum of the Laplacian matrix that encodes the network topology. As emergent behavior, each agent's state oscillates only at frequencies corresponding to the eigenvalues of the Laplacian matrix thus mapping the spectrum estimation problem into a signal processing problem solvable using the Fourier Transform. It is further shown that the constant component of the emergent behavior in the frequency domain solves the consensus on the average problem. The spectrum estimation algorithm is then applied to leader-follower networks of mobile vehicles to infer in a decentralized way properties such as controllability, osservability and other topological features of the network such as its topology. Finally, a fault detection and recovery technique for sensor networks based on the so called motion-probes is presented to address the inherent lack of robustness against outlier agents in networks implementing consensus algorithms to solve the distributed averaging problem.
منابع مشابه
Designinga Neuro-Sliding Mode Controller for Networked Control Systems with Packet Dropout
This paper addresses control design in networked control system by considering stochastic packet dropouts in the forward path of the control loop. The packet dropouts are modelled by mutually independent stochastic variables satisfying Bernoulli binary distribution. A sliding mode controller is utilized to overcome the adverse influences of stochastic packet dropouts in networked control system...
متن کاملTime Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter
In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...
متن کاملMarkovian Delay Prediction-Based Control of Networked Systems
A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...
متن کاملDistributed leaderless consensus algorithms for networked Euler-Lagrange systems
This article proposes and analyses distributed, leaderless, model-independent consensus algorithms for networked Euler–Lagrange systems. We propose a fundamental consensus algorithm, a consensus algorithm accounting for actuator saturation, and a consensus algorithm accounting for unavailability of measurements of generalised coordinate derivatives, for systems modelled by Euler–Lagrange equati...
متن کاملModelling and Compensation of uncertain time-delays in networked control systems with plant uncertainty using an Improved RMPC Method
Control systems with digital communication between sensors, controllers and actuators are called as Networked Control Systems (NCSs). In general, NCSs encounter with some problems such as packet dropouts and network induced delays. When plant uncertainty is added to the aforementioned problems, the design of the robust controller that is able to guarantee the stability, becomes more complex. In...
متن کاملDistributed estimation and control applications using linear consensus algorithms
In this chapter we present a popular class of distributed algorithms, known as linear consensus algorithms, which have the ability to compute the global average of local quantities. These algorithms are particularly suitable in the context of multi-agent systems and networked control systems, i.e. control systems that are physically distributed and cooperate by exchanging information through a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011